19 research outputs found

    Topological transformations of speckles

    Full text link
    Deterministic control of coherent random light is highly important for information transmission through complex media. However, only a few simple speckle transformations can be achieved through diffusers without prior characterization. As recently shown, spiral wavefront modulation of the impinging beam allows permuting intensity maxima and intrinsic ±1\pm 1-charged optical vortices. Here, we study this cyclic-group algebra when combining spiral phase transforms of charge nn, with D3D_3- and D4D_4-point-group symmetry star-like amplitude modulations. This combination allows statistical strengthening of permutations and controlling the period to be 3 and 4, respectively. Phase saddle-points are shown to complete the cycle. These results offer new tools to manipulate critical points in speckles.Comment: 14 pages, 10 figures, 4 table

    Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    Full text link
    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 \mu m inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 \mu m diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip

    Nondestructive measurement of the roughness of the inner surface of hollow core-photonic bandgap fibers

    No full text
    We present optical and atomic force microscopy measurements of the roughness of the core wall surface within a hollow core photonic bandgap fiber (HC-PBGF) over the [3×10-2 ”m-1 to 30 ”m-1] spatial frequency range. A recently developed immersion optical profilometry technique with picometer-scale sensitivity was used to measure the roughness of air-glass surfaces inside the fiber at unprecedentedly low spatial frequencies, which are known to have the highest impact on HC-PBGF scattering loss and, thus, determine their loss limit. Optical access to the inner surface of the core was obtained by the selective filling of the cladding holes with index matching liquid using techniques borrowed from micro-fluidics. Both measurement techniques reveal ultralow roughness levels exhibiting a 1/f spectral power density dependency characteristic of frozen surface capillary waves over a broad spatial frequency range. However, a deviation from this behavior at low spatial frequencies was observed for the first time, to the best of our knowledge

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    High contrast and resolution 3-D ultrasonography with a clinical linear transducer array scanned in a rotate-translate geometry

    No full text
    International audienceWe propose a novel solution for volumetric ultrasound imaging using single-side access 3-D synthetic-aperture scanning of a clinical linear array. This solution is based on an advanced scanning geometry and a software-based ultrasound platform. The rotate-translate scanning scheme increases the elevation angular aperture by pivoting the array [-45° to 45°] around its array axis (axis along the row of its elements) and then, scans the imaged object for each pivoted angle by translating the array perpendicularly to the rotation axis. A theoretical basis is presented so that the angular and translational scan sampling periods can be best adjusted for any linear transducer array. We experimentally implemented scanning with a 5-MHz array. In vitro characterization was performed with phantoms designed to test resolution and contrast. Spatial resolution assessed based on the full-width half-maximum of images from isolated microspheres was increased by a factor 3 along the translational direction from a simple translation scan of the array. Moreover, the resolution is uniform over a cross-sectional area of 4.5 cm 2. Angular sampling periods were optimized and tapered to decrease the scan duration while maintaining image contrast (contrast at the center of a 5 mm cyst on the order of-26 dB for 4° angular period and a scan duration of 10 s for a 9cm 3 volume). We demonstrate that superior 3-D US imaging can be obtained with a clinical array using our scanning strategy. This technique offers a promising and flexible alternative to development of costly matrix arrays toward the development of sensitive volumetric ultrasonography

    High-Resolution Multispectral Optoacoustic Tomography of the Vascularization and Constitutive Hypoxemia of Cancerous Tumors

    Get PDF
    Diversity of the design and alignment of illumination and ultrasonic transducers empower the fine scalability and versatility of optoacoustic imaging. In this study, we implement an innovative high-resolution optoacoustic mesoscopy for imaging the vasculature and tissue oxygenation within subcutaneous and orthotopic cancerous implants of mice in vivo through acquisition of tomographic projections over 180° at a central frequency of 24 MHz. High-resolution volumetric imaging was combined with multispectral functional measurements to resolve the exquisite inner structure and vascularization of the entire tumor mass using endogenous and exogenous optoacoustic contrast. Evidence is presented for constitutive hypoxemia within the carcinogenic tissue through analysis of the hemoglobin absorption spectra and distribution. Morphometric readouts obtained with optoacoustic mesoscopy have been verified with high-resolution ultramicroscopic studies. The findings described herein greatly extend the applications of optoacoustic mesoscopy toward structural and multispectral functional measurements of the vascularization and hemodynamics within solid tumors in vivo and are of major relevance to basic and preclinical oncological studies in small animal models
    corecore